Kepler's Orbital Lab Activity

PURPOSE:

To draw scale models of the inner planets' orbits, asteroids and comet's orbits around the sun.

MATERIALS

Plain Poster paper
4 straight pins
Cardboard (2 pieces)
String

Scissors
Pencil (colored will
be helpful)
Metric ruler

PROCEDURE

1. Place a sheet of paper over the cardboard. Draw a small circle near the center of the paper.

A Through the center of the circle, press a pin (\#1) through the cardboard (both pieces if possible) to anchor it well
B Label the circle SUN.
2. When making the orbits, do not move the pin (\#1) labeled SUN.

A Move only the pin (well will call \#4) the proper distance each time
B Move it in a straight line (to the right) so the holes it makes are in a line.
3. First make the string loop, cut a piece of string several centimeters longer than the distance around the loop.

SEE DA TA TABLE ON THE NEXT PA GE
A Place the $2^{\text {nd }}(\# 2)$ pin somewhere in the cardboard NOT on the poster paper which you will draw on.
B Using the metric ruler, place the $3^{\text {rd }}$ pin the distance apart (in cm) as indicated on the data table on the next page
C Loop the string around both pins (\#2 \& \#3) and bring the ends of the string together at the proper distance and tie a knot.
i For example, for VENUS, you cut a piece of string about 30 centimeters long.
ii Bring the ends together and tie a knot at 8.8 centimeters
iii Check the knot as you tighten it. (See Fig. 1-3 (b)).
4. The following data table (on the next page) shows how far apart to set the forth (\#4) pin from the sun (\#l) pin is.
5. Look at Fig. 1-3 (a). You will use this method shown in the figure to draw the elliptical orbit of Mars, Earth, Venus, and Mercury, in that order, on the same sheet of paper.

A Keep the string tight as you move the pencil while making the orbit,
B You may wish to practice once or twice on a separate sheet of paper.
C Draw the elliptical orbit carefully.
6. Label each orbit by placing the dot (to represent the planet) and place the planet's proper symbol as soon as you draw it.
7. Then continue the activity but this time you will add an asteroids and comets to your drawing.
8. Label each orbit by placing the drawing (to represent the asteroid or comet) and place the proper symbol as soon as you draw it.
9. Answer the Data Analysis and Conclusion

$\begin{gathered} \text { Object } \\ \text { scale: } \\ 1.0 \mathrm{~cm}=12,400,000 \mathrm{~km} \\ \text { And } \\ 1.0 \text { mile }=1.6 \mathrm{~km} \end{gathered}$	Distance for the string to makealoop (cm)	Distance between Pins from the Sun in cm UNLESS told differently.	Location of planet $\left({ }^{\circ}\right)$ USE inside numbers If\# is MORE than 180 then you need to subtract 360 Use outside numbers	Where the planet rises above (SOLID line) the stellar plane to 180° where below (DASH) plane in ${ }^{\circ}$
Venus (brown) 67,000,000 mi	8.8	0.1	120	75 (this starts the solid line going counter clockwise)
Earth (blue) 93,000,000 mi	12.1	0.3	110	(this is a solid line) on the plane
$\begin{gathered} \text { Mars (red) } \\ 142,000,000 ~ m i \end{gathered}$	19.9	2.1	60	50
Mercury (green) 35,000,000 mi	6.5	1.2	10	45
Asteroid Ceres (any) 257,000,000 mi	22.4	0.6	190 (360-190=170)	130
Asteroid Apollo (any)	17.0	6.0	270	126
Asteroid Aten (any)	24.6	7.4 @ $270{ }^{\circ}$	160	245

BACK SIDE of POSTER paper OR use another POSTER paper... ASK your teacher!

$\begin{array}{\|c} \hline \text { Object } \\ \text { scale: } \\ 0.6 \mathrm{~cm}=161,920,000 \mathrm{~km} \\ \text { And } \\ 1.0 \text { mile }=1.6 \mathrm{~km} \end{array}$	Distance for the string to make aloop (cm)	Distance between Pins from the Sun in cm UNLESS told differently.	Location of planet $\left({ }^{\circ}\right)$ USE inside numbers If\# is MORE than 180 then you need to subtract 360 Use outside numbers from the \#.	Where the planet rises above the stellar plane (${ }^{\circ}$)
Neptune (bue) 2,800,000,000 mi	18.0	0.0	150	132
Jupiter (brown) 809,600,000 mi	3.1	0.2	50	100
Saturn (purple) 888,200,000 mi	5.7	0.3	204 (360-204=156)	114
Uranus (green) 1,790,000,000 mi	11.5	0.5	136	74
	0.9	0.7	60	50
Main Asteroid Ceres 257,000,000 mi	1.7	0.1	210	130
Pluto 3,670,000,000 mi	23.7	8.0 @ $225{ }^{\circ}$	310	300
Comet Halley	35.0	$33.0 @ 160{ }^{\circ}$	190	240

Data Analysis \& Conclusion: (each problem is 1 point value)

1. Which answer BEST describe the shapes of the orbits of the inner planets.
A The orbits are circular
C The orbits are spherical
B The orbits are elliptical
D The orbits are squared
2. Which two planets seem almost identical? Meaning the orbit is similar.
A Mercury \& Venus
C Venus \& Earth
E Aten \& Earth
B Earth \& Mars
D Mercury \& Ceres
3. Which is the correct order of the planets according to your illustration?

A Venus, Earth, Mars, Mercury, Ceres
B Mercury, Venus, Earth, Ceres, Mars
C Mars, Venus, Earth, Mercury, Ceres
D Mercury, Venus, Earth, Mars, Ceres
4. The Asteroid that crosses Earth's orbit is located where at right now?
A Between Earth and Venus
C Between Mars and Ceres
B Between Earth and Mars
D Earth and Aten
5. SELECT which asteroid orbit is most like the orbits of the planets drawn?
A Asteroid Aten
B Asteroid Apollo
C Asteroid Ceres
6. Most asteroids follow a typical path. SELECT which asteroid has a path that is much closer to the sun than that of the typical asteroid?
A Asteroid Ceres
B Asteroid Apollo
C Asteroid Aten
7. SELECT which asteroid has a path that takes it much farther from the sun than the typical asteroid?
A Asteroid Aten
B Asteroid Apollo
C Asteroid Ceres
8. SELECT which asteroid has the potential of colliding with Earth?
A Asteroid Aten
B Asteroid Apollo
C Asteroid Ceres
9. Which two planets seem almost identical "elliptical orbits? Meaning the orbit is oval.
A Mercury \& Venus
C Apollo Bob
E Mercury \& Mars
B Apollo \& Ceres
D Venus \& Earth
10. Compare the path of Mars \& Ceres from the first side to the back side?

A The orbits are the same on both sides, just the scale size changed
B The orbits are different on both sizes. They are more circular on one size and oval shaped on the other side.
C The orbit of Mars is the same on both sides, BUT Ceres is more circular on one size and oval shaped on the other side.
D The orbit of Ceres is the same on both sides, BUT Mars is more circular on one size and oval shaped on the other side.

Data Analysis \& Conclusion: (outer planets... Halley comet's side)

11. Which shape BEST describe the shapes of the orbits of most outer planets.
A Circular
B Elliptical
C Spherical
12. Which shape BEST describe the shapes of the Neptune orbit?
A Circular
B Elliptical
C Spherical
13. Which planets appear to "cross" orbits even though they REALLY do not?
A Jupiter \& Ceres
C Halley's Comet \& Neptune
B Venus \& Earth
D Neptune \& Pluto
14. SELECT which Object listed below has an extreme elliptical orbit?
A Halley's Comet
B Pluto
C Typical Asteroid
15. According to your orbital lab with object is farthest from the Sun?
A Neptune
C Pluto
B Halley's Comet
D Asteroid Ceres
16. Which MAJOR planet is located below is orbital plane?
A Mars
C Saturn
B Jupiter
D Uranus
17. Halley's Comet in its orbit right now is located where?
A Between Neptune and Uranus
C Between Saturn and Jupiter
B Between Pluto and Neptune
D Between Jupiter and Ceres
18. Describe the orbital path of the Comet?
A The orbits are circular
C The orbits are spherical
B The orbits are ellipse (ovals)
D The orbits are squared
19. Compare the path of Halley's Comet to the path of a typical asteroid.

A Halley's Comet has a more extreme ellipse than the Typical Asteroid which is closer to being circular.
B Halley's Comet has a more circular than the Typical Asteroid which is MORE elliptical
C Both Halley's Comet \& the Typical Asteroid are circular
D Both Halley's Comet \& the Typical Asteroid are spherical
20. What is the distance (in centimeters) from the Sun to the Earth using the scale given on the data table? HINT: Earth is $\mathbf{9 3} \mathbf{0 0 0} \mathbf{0 0 0}$ miles from the Sun.
A 5.95 cm
C 12.0 cm
B 7.50 Km
D 1.4530000000000000 cm
E My answer is not shown above

Show your math work (+5) on the SCAN TRON.
\qquad DATE: \qquad PD: \qquad

Kepler's Orbital Lab Rubric

TOTAL:

01

01

18
$\begin{array}{llllllll}0 & 12 & 3 & 4 & 5 & 6 & 7 & 8 \\ 9 & 1011\end{array}$
$\begin{array}{lllll}0 & 1 & 2 & 3 & 4\end{array}$

01
$0 \quad 1 \quad 2$

CURATE EVALUATION SHEET:

1) LOCATED on POSTER PAPER:
a. Title of project on at least ONE side of poster
b. Name on at least ONE side of poster
2) KEY: has the student identified on BOTH sides of poster
a. Planet major (each): \& (2 dwarf planet)
b. Asteroid (each): 3 on one side; one on back side
c. Comet: on back side
d. SUN: on BOTH sides

3) ORBIT OF PLANETS \& OTHERS

MUST have the following: (+1 symbol; +1 location; +1 orbit +1 color $)$
$\begin{array}{lllll}0 & 1 & 2 & 3 & 4\end{array}$
$\begin{array}{lllll}0 & 1 & 2 & 3 & 4\end{array}$
$\begin{array}{lllll}0 & 1 & 2 & 3 & 4\end{array}$
$\begin{array}{lllll}0 & 1 & 2 & 3 & 4\end{array}$
$\begin{array}{lllll}0 & 1 & 2 & 3 & 4\end{array}$
$\begin{array}{lllll}0 & 1 & 2 & 3 & 4\end{array}$
$\begin{array}{lllll}0 & 1 & 2 & 3 & 4\end{array}$
$\begin{array}{lllll}0 & 1 & 2 & 3 & 4\end{array}$
$\begin{array}{lllll}0 & 1 & 2 & 3 & 4\end{array}$
$\begin{array}{lllll}0 & 1 & 2 & 3 & 4\end{array}$
$\begin{array}{lllll}0 & 1 & 2 & 3 & 4\end{array}$
$\begin{array}{lllll}0 & 1 & 2 & 3 & 4\end{array}$
$\begin{array}{lllll}0 & 1 & 2 & 3 & 4\end{array}$
$\begin{array}{lllll}0 & 1 & 2 & 3\end{array}$
$\begin{array}{lllll}0 & 1 & 2 & 3 & 4\end{array}$
$\begin{array}{llllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$
a. Mercury: (any GREEN)
b. Venus (colored in BROWN)
c. Earth (colored in BLUE)
d. Mars (colored in RED)
e. Typical Asteroid CERES (colored in YELLOW) ---- ---- ------- --
f. Apollo (asteroid) (any color \& symbol)
g. Aten (asteroid)
(any color \& symbol)

MUST have the following: (+1 symbol; +1 location; +1 orbit +1 color $)$
h. Mars (colored in RED) (other side)
i. Ceres Typical Asteroid colored in YELLOW) ----
j. Jupiter
k. Saturn (colored in PURPLE)

1. Uranus
m. Neptune
n. Pluto (dwarf planet) (any color)
o. Halley's comet (colored in BLACK)
4) Professional look over all

Eraser marks/ white out -2/error Random lines -3 LATE -4

